Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy.
نویسندگان
چکیده
A new type of multifunctional unimolecular micelle drug nanocarrier based on amphiphilic hyperbranched block copolymer for targeted cancer therapy was developed. The core of the unimolecular micelle was a hyperbranched aliphatic polyester, Boltorn H40. The inner hydrophobic layer was composed of random copolymer of poly(ε-caprolactone) and poly(malic acid) (PMA-co-PCL) segments, while the outer hydrophilic shell was composed of poly(ethylene glycol) (PEG) segments. Active tumor-targeting ligands, i.e., folate (FA), were selectively conjugated to the distal ends of the PEG segments. An anticancer drug, i.e., doxorubicin (DOX) molecules, was conjugated onto the PMA segments with pH-sensitive drug binding linkers for pH-triggered drug release. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis showed that the unimolecular micelles were uniform with a mean hydrodynamic diameter around 25 nm. The drug loading content was determined to be 14.2%. The drug release profile, cell uptake and distribution, and cytotoxicity of the unimolecular micelles were evaluated in vitro. The folate-conjugated micelles can be internalized by the cancer cells via folate-receptor-mediated endocytosis; thus, they exhibited enhanced cell uptake and cytotoxicity. At pH 7.4, the physiological condition of bloodstream, DOX conjugated onto the unimolecular micelles exhibited excellent stability; however, once the micelles were internalized by the cancer cells, the pH-sensitive hydrazone linkages were cleavable by the intracellular acidic environment, which initially caused a rapid release of DOX. These findings indicate that these unique unimolecular micelles may offer a very promising approach for targeted cancer therapy.
منابع مشابه
Truncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy
Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...
متن کاملTheranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging
Brush-shaped amphiphilic block copolymers were conjugated with a monoclonal antibody against CD105 (i.e., TRC105) and a macrocyclic chelator for (64)Cu-labeling to generate multifunctional theranostic unimolecular micelles. The backbone of the brush-shaped amphiphilic block copolymer was poly(2-hydroxyethyl methacrylate) (PHEMA) and the side chains were poly(L-lactide)-poly(ethylene glycol) (PL...
متن کاملMultifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging.
A multifunctional unimolecular micelle made of a hyperbranched amphiphilic block copolymer was designed, synthesized, and characterized for cancer-targeted drug delivery and non-invasive positron emission tomography (PET) imaging in tumor-bearing mice. The hyperbranched amphiphilic block copolymer, Boltorn(®) H40-poly(L-glutamate-hydrazone-doxorubicin)-b-poly(ethylene glycol) (i.e., H40-P(LG-Hy...
متن کاملState of the art of stimuli-responsive liposomes for cancer therapy
Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at t...
متن کاملState of the art of stimuli-responsive liposomes for cancer therapy
Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioconjugate chemistry
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2010